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Abstract

The concept and principles of applying a multi-continuum model for calculating a hydrocyclone performance is presented. In this
model the carrying liquid is described as one continuum, and each particle fraction, with its characteristic size is described as a separate
continuum. Particle–particle and particle–fluid interactions derived from a lubrication theory and a collision theory are discussed. A set of
governing partial differential equations consisting of mass and momentum conservation equations together with constitutive expressions is
discussed. These equations were discretized by applying an unstructured grid consisting of tetrahedral elements. A numerical solver based
on a finite element method combined with a segregated approach is described. The numerical approach is subject to ongoing research.
© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In most hydrocyclones, solids are fed in through a single
inlet located at a cylindrical part. Downstream, a flow pat-
tern adjusts itself to meet the flow conditions existing within
a conical shaped region. The velocity difference between the
feed slurry and rotating slurry is the source of turbulence
generated at the inlet. Particles, entering a hydrocyclone tend
to become located close to the wall as a result of the differ-
ence between centrifugal force and the pressure gradient. A
flow rotation inside a concave wall generates a high turbu-
lence level within a boundary layer. Turbulence and particle
collisions are responsible for dispersing particles within the
hydrocyclone body.

The flow behaviour close to the inlet has a profound im-
pact on the efficiency of a hydrocyclone, Nonaka and Tashiro
[1]. Diffusive mixing in the hydrocyclone propagates the tur-
bulent energy and particles smaller than about 50mm and
with density less than 3000 kg m−3 move along with the sur-
rounding fluid elements. Mixing phenomena at the entrance
region to the hydrocyclone are neglected in the existing the-
oretical and numerical models, Dyakowski and Williams [2],
Hsieh and Rajamani [3], and Bloor and Ingham [4]. Inlet
conditions are simulated by a uniform distribution of tangen-

∗ Corresponding author. Fax:+44-161-2004399.
E-mail address:tom.dyakowski@umist.ac.uk (T. Dyakowski).

tial and radial velocities along the circumference, and there-
fore their assumed values are much lower than the real ones.

Particle separation mechanisms have been studied by
calculating their trajectories obtained by solving equations
of motion in Lagrangian co-ordinates. Deterministic and
probabilistic approaches were developed for a low particle
concentration, for example by, Averous and Fuentes [5],
and Devulapalli and Rajamani [6]. It seems to be very dif-
ficult to extend a Lagrangian approach for higher particles
concentrations. This would need to take into account the
complex physics describing particle–particle interactions.

A multi-continuum model was proposed by Davidson [7]
for studying particle concentration profiles within a hydro-
cyclone. This model can be applied for the whole range of
particle concentrations, and is based on the premise that it is
sufficient to describe each solid fraction as a continuum, oc-
cupying the same region in space. The new ‘fluid’ consists
of many different phases and sometimes its motion can also
be described as a mixture. The fact that all phases remain
physically separate implies that the motion of each phase
has to be constrained by the presence of other phases. The
change of each phase in a control macroscopic volume is
measured by the volume fraction (the volume of each phase
per unit volume of mixture). Therefore, the principal task
of the theoretical description is to specify how the different
phases interact between themselves.

The aim of this paper is to present an implementation
of a multi-continuum model for a three-dimensional (3D)
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flow simulation within a hydrocyclone. This model should
include constitutive equations describing various types of
particle–fluid and particle–particle interactions. An analysis
of these interactions is discussed. A finite element method
is applied for studying a flow within a 3D geometry. The
unstructured grids consisting of tetrahedral elements were
generated to describe complex inlet geometry. A choice of
approximation function for velocity and pressure, which is
crucial in implementing the proposed method, is presented.

2. A multi-continuum model

Consider a mixture composed of a Newtonian fluid (de-
noted by subscript ‘f’) and theN particle groups (divided
according to particle size and/or density) and denoted by
subscript ‘i’. Here, ensemble averaged mass and momentum
conservation equations are presented. Ensemble averaging
avoids shortcomings of time and volume averaging, Crowe
et al. [8]. The equations presented below are valid under the
following conditions:
• carrying fluid is incompressible and flow is isothermal
• particles deformation, break up and coalescence are

neglected
• kinetic turbulent energies describe turbulent interactions

between all phases
According to Rajagopal and Tao [9] a set of conservation

equations is suggested:
Volume continuity equation for solid phases:

∂αi/∂t + div(αivvvi) = 0 (1)

Mass continuity equations for liquid phase:

∂ρf /∂t + div(ρfvvvf ) = 0 (2)

Momentum conservation equations for solid phases:

∂ρivvvi/∂t + div(ρivvvi⊗vvvi) = div(σi)−mmm + ρibbbI (3)

for liquid phase:

∂ρfvvvf /∂t + div(ρfvvvf ⊗vvvf ) = div(σf ) + mmm + ρfbbbf (4)

Kinetic turbulent energy conservation equations for solid
phases:

∂ρiki/∂t + div(ρivvviki) = div(Bi) + βi (5)

for liquid phase:

∂ρf kf /∂t + div(ρfvvvf kf ) = div(Bf ) + βf (6)

The definitions of averaged liquid and solids densities and
linear momenta are given in Appendix A.si andsf are the
Cauchy stress tensors associated with the fluid continuum
and the solid continua,mmm is the interactions term between
the fluid and solid continua, andbbb is the external force.ki

andkf are the turbulent kinetic energies of the solid phases
and liquid phases.

To solve the above set of equations, the constitutive equa-
tions are needed. Here, the discussion of these equations is
presented for a mono-dispersed solids (ρi=ρs,vvvi=vvvs, where
i=1, 2, 3, . . .,N).

The Cauchy stress tensorssf , ss and the vectormmm can be
split in two parts:

sf = sa
f + st

f (7)

ss = sa
s + st

s (8)

mmm = mmma + mmmt (9)

Components with superscript ‘t’ are responsible for mo-
mentum transfer between the averaged velocity fields and
fluctuations velocity fields.

sa
f = [−αf P + a1trDf ]III + a2Df

+a0ρf (vvvf −vvvs)⊗(vvvf −vvvs) (10)

sa
s = [−αsP−1/2ρf αs da0/dαs|v|v|vf −vvvs|2 + a3trDs]III

+a4Ds + a0ρs(vvvf −vvvs)⊗(vvvf −vvvs) (11)

P is a Lagrangian multiplier due to the volume additivity
constraint (αf + αs= 1) andD is a mean rate of strain tensor.
The above equations show a Newtonian fluid like structure,
with the additional terms induced by virtual mass effect.
Due to the viscous dissipation the coefficientsa0 ≥ 0,a2 ≥ 0,
a4 ≥ 0, a1 + 1/3a2 ≥ 0, a3 + 1/3a4 ≥ 0.

The interaction between phases is postulated to be
described by the following expression:

mmma = −P∇αs−1/2ρf da0/dαs|v|v|vf −vvvs|2∇αs

+a0ρf (Dfvvvs/Dt−DDsvvvf /Dt) + a5(vvvf −vvvs) (12)

where a5 ≥ 0, and the volume additivity constraint, the
virtual mass effect, and the drag effect are included.

The structure of the terms representing momentum trans-
fer between the averaged velocity fields and fluctuations
velocity fields were assumed to be similar to a Boussinesq’s
model for a single-phase flow.

TermsBf andBs are dependent only on the gradients of
the kinetic turbulent energy and the termsβ f and βs are
functions of the gradients of the averaged velocities of both
phases and the relative velocity between each phase.

For a multi-dispersed mixture the Bagnoldi stresses play
an important role in the vicinity of a hydrocyclone, Davidson
[7]. A fluid flow within a hydrocyclone has a 3D character
and the presence of a strong swirl manifests itself in an
anisotropic character of turbulence, and for such a case, a
Boussinesq’s model is not suitable.

A general approach describing importance of various
types of particle–fluid and particle–particle interaction is
based on the force balance acting on a solid particle, Roco
[10]. The characteristic time scales are obtained from the
analysis of the force balance equation. Within a hydrody-
namic region these are the viscous liquid–solid (drag)td,
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Table 1
Time scales for particle interactions in the hydrodynamic range (from Roco [8])a

Type of particle interaction Time scales (tm) (s) Comments

Viscous liquid–solid interaction (drag) td = 4

3

sds

CD |vvvL − vvvs
= sd2

s

/
18vL (5a) WhereCD = f (Res)

For Res<0.1

= 4

3

sds

0.44|vvvL − vvvs| (5b) For Res>103

Lubrication tlub = 18

sds

λ̇

γ̇
(6) λ̇/ds = 1 − (α∗)0.33

(α∗)0.33
, whereα∗ = αsolid/αmax

Collision tcol = 4.5

sγ̇
loge

(
λ̇/2k̇

)
(7) k̇, the particle-surface roughness,k̇ = f (ds)

a WhereCD is the drag coefficient,ds is solid particle diameter, Res is particle Reynolds number,s is density ratio between solid and liquid,αsolid

is the total volume fraction of solid,αmax is the total volume fraction of solid at maximum packing,γ̇ is the mean rate of deformation andvL is the
kinematic viscosity of liquid phase.

lubrication tlub and collision time scaletcol, and are given
in Table 1. The relation between various time scales has the
form:(

1

tm

)
(

1

tn

) = tn

tm
= Ni,m > 1 (13)

An interaction mechanism that is characterised by the
time scaletm is more frequent and therefore has a larger
distribution to the momentum transfer than another interac-
tion mechanism characterised by the time scaletn. Eq. (13)
defines the particle interaction number,Ni,m.

3. Case study of time scales

An example of the calculations of time scales was based
on the 75-mm diameter hydrocyclone analysed by Rajamani
and Milin [11]. The feed slurry is 35% limestone by wt.,
and the particle size is ranged from 1 to 90mm. The results
obtained in [11] showed very small variations of the gradi-
ent dw/dr along the hydrocyclone height. Taking this into
account and the zonal hydrocyclone concepts presented by
Concha et al. [12], the flow pattern within a hydrocyclone
was split into six regions, Fig. 1. Region II (Fig. 1) covers
the flow in a cylindrical part below a vortex finder as well as
within a conical part. The flow characteristics of each zone
are described in Table 2.

The calculated time scales are shown in Tables 3 and 4.
It can be seen that the drag time scale,td is independent
of the volume fraction while the lubrication and collision
time scales,tlub and tcol are strongly dependent on volume
fraction. On the other hand, the lubrication and collision time
scales,tlub and tcol are independent of the particle size but
the drag time scale,td is strongly dependent on the particle
size.

The results of the prevailing interaction mechanism in
each flow are shown in Fig. 2. For the solid concentra-
tion below 0.3% by vol., the main mechanism is viscous
liquid–solid interaction (drag). The lubrication mechanism

Fig. 1. Zones in a hydrocyclone.

Table 2
The flow characteristics in each zone in hydrocyclone

Zone Volume
fraction

Particle
size (mm)

The mean rate of defor-
mation, d|wa|/dr (S−1)

I α<0.1 1–90 80
0.1<α<0.2
0.2 < α ≤ 0.3

II a<0.1 1–90 112
0.1<a<0.2
0.2 < α ≤ 0.3

III α > 0.3 1–90 633
IV α > 0.3 1–90 200
V α < 0.1 1–65 420
VI – – –

a w denotes the tangential velocity.
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Table 3
The drag time scale,td of each particle size for all flow zone

Particle size (mm) td = sd2
s/18vf (s)

90 1.25×10−3

65 6.0×10−4

45 3.04×10−4

33 1.63×10−4

23 7.94×10−5

16 3.84×10−5

11 1.82×10−5

8 9.6×10−6

4 2.4×10−6

3 1.35×10−6

1 1.5×10−7

is prevalent within the lateral boundary layer and the area
near the air-core.

4. 3D numerical algorithm

The philosophy underpinning this work was to avoid the
introduction of any numerical technique, which would re-
strict the geometric flexibility. A finite volume method is
not well suited to handle with irregular meshes, which are
needed for modelling inlet geometry of hydrocyclones. It
should be emphasised that the all-numerical algorithms for
flow simulations within a hydrocyclone are restricted to an
axi-symmetrical case and for such a case a finite volume
technique was applied, Dyakowski and Williams [2]. The
need for simulation inlet conditions, as well as the demand
for high accuracy, were the main reasons for using the finite
element method with the segregated solution algorithm. The
segregated solutions are now the preferred method of solu-
tion for most Computational Fluid Dynamics solvers. Since,
in the finite element technique calculations are performed on
element by element basis one can use unstructured meshes.
The inherent geometric flexibility permits the easy use of
simple Cartesian co-ordinate system. This is considered as
a strong advantage particularly in 3D geometry. There is

Table 4
The lubrication and collision time scales,tlub and tcol

Zone Solid concentration (volume fraction) tlub = 18

sds

λ

γ̇
(s) tcol = 4.5

sγ̇
loge (λ/2k) (s)

I α<0.1 tlub>0.07504 tcol>0.17526
0.1<α<0.2 0.07504>tlub>0.0426 0.17526>tcol>0.1635
0.2 < α ≤ 0.3 0.0426>tlub≥0.0268 0.1635>tcol≥0.1538

II α<0.1 tlub>0.05524 tcol>0.12327
0.1<α<0.2 0.05524>tlub>0.03456 0.12327>tcol>0.11625
0.2 < α ≤ 0.3 0.03456>tlub≥0.01925 0.11625>tcol≥0.109485

III α > 0.3 tlub<0.0034 tcol<0.01943
IV α > 0.3 tlub<0.0107 tcol<0.0615
V α < 0.1 tlub>0.01429 tcol>0.03338
VI – – –

Fig. 2. The main interaction mechanisms in a 75-mm hydrocyclone.

no need for global mappings and global transformation of
equations.

In this work, the unstructured finite element grid, based
on tetrahedral elements has been developed. By using these
simple shape elements it was possible to accurately repre-
sent the computational domain by a finite element mesh.
The following methodology was applied when generating a
mesh. The computational volume, where possible, was di-
vided into eight-cornered brick elements. A systematic way
of creating such elements was devised. The bricks are then
divided into five tetrahedral elements. Additional partial
refinement of the mesh was made in the boundary region
and in the profiled head entry region. A global refinement
and adjustment of the mesh is possible in two ways. First of
all, global grid parameters and the number of subdivisions
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Fig. 3. The dimensions of hydrocyclones which can be changed in com-
puter program.

can be changed (Fig. 3). Secondly, subdividing each tetra-
hedron into 12 smaller tetrahedrons, by first joining the cen-
troid of the large tetrahedron to the vertices and centroids of
the faces. This methodology allows one to produce a grid,
which applies to hydrocyclones of different dimensions. It
was possible to control mesh density and structure. Fig. 4
presents a grid for to 50 mm diameter Mozley hydrocy-
clone. The mesh comprises the whole hydrocyclone geom-
etry including the head entry section and external part of
the inlet feeder orifice (Fig. 5). In this case, the number of
elements in the grid was in the order of 26 000, the small-
est element being in the central region of the cyclone in the
order 1.6 mm. The mesh generation for the cyclone of dif-
ferent dimensions but of the same class is straightforward.
One only needs to replace input parameters in the computer
program.

In order to introduce an algorithm in compact form the
flow model will be treated as a steady-state one-phase case,
Gresho [13]. Extension to more general multi-phase tur-
bulent and transient flow will require solving additional

Fig. 4. The unstructured grid consisting of tetrahedral elements within
hydrocyclone.

Fig. 5. The grid in the profiled head entry region.
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equations, but from the algorithmic point of view this does
not change the general philosophy presented below. The
weak form of the primitive variables governing equations
is of Galerkin’s type, Gunzburger [14]. Dependent variables
pressure and velocity are approximated by the expansions

pe =
4∑

j=1

pe
jµ

e
j = µµµT ppp (14a)

ue
i =

10∑
j=1

ue
jϕ

e
j = 888888888T uuui (14b)

whereµµµ and 888 and are vectors of interpolation (shape)
functions, anduuui andppp are vectors of nodal values of veloc-
ity components and pressure, respectively. Substitution of
Eqs. (14a) and (14b) into a weak form of continuity (1) and
momentum (2) equations results in the finite element equa-
tions. The derived equations can be written symbolically in
matrix form as


KKKuu KKKuv KKKuw −CCCx

KKKvu KKKvv KKKvw −CCCy

KKKwu KKKwv KKKww −CCCz

CCCT
x CCCT

y CCCT
z 0






u

v

w

p


 =




FFFx

FFFy

FFFz

bbbc


 (15)

whereK sub-matrices represent the combined effects of ad-
vection and diffusion,C matrices are the pressure gradient
operators and their transposes;CT appearing in the continu-
ity equation is the velocity divergence operators. The vector
bbbc on the right hand side of the continuity equation rep-
resents the contribution to this equation from the non-zero
Dirichlet velocity boundary conditions. The vectorFFF con-
tains surface-flux type contributions from the natural bound-
ary conditions as well as a body force.

Two sets of interpolations functions used in equations
are of Lagrange type. They cannot be chosen arbitrar-
ily since they have to satisfy compatibility conditions. In
order to prevent an over-constrained system of discrete
equations, the interpolation used for pressure must be at
least one order lower than that used for velocity field,
Sani [15,16]. The interpolation functions should satisfy the
Ladyzhenskaya–Babuska–Brezzi (LBB) stability condition,
Brezzi and Fortin [17]. The Taylor–Hood interpolation func-
tions were used in order to ensure second order accuracy
and satisfy the LBB condition, Thatcher [18]. The pressure
interpolation function has a linear form and the velocity
component interpolation functions are of a quadrilateral
form.

As an equation solver the pressure projection algorithm
was adopted. The applied algorithm was proposed by
Horoutunian et al. [19]. It is a consistent finite element
counterpart of the SIMPLER algorithm first introduced
by Patankar [20]. The primary variables were de-coupled
directly from momentum and continuity Eq. (15) at the dis-
cretized level. The algorithm comprises three main steps.
They are characterised by generic systemAxAxAx=bbb and are

solved sequentially and repeatedly during the course of
iteration. At the beginning of a given iteration, an approx-
imation to the pressure is obtained from the solution of a
simplified pressure equation using the latest available field
variables. The components of the momentum equations are
then solved in sequential manner using the most recent field
data. Finally, at the end of the whole sequence, the veloc-
ity field is corrected to satisfy the discretized continuity
equation.

5. Conclusions and further work

A development of a fully 3D model for flow simulations
within a hydrocyclone is discussed. Two issues concerned
with a practical implementation of this model are addressed:
• The first is concerned with a proper choice of con-

stitutive equations for a multi-continuum model. The
postulates presented indicate that both lubrication and
particle–particle collision mechanisms are important only
for the regions close to the wall. This significantly will
reduce the complexity of the constitutive equations.

• The second is focus on the development of a numerical
solver. A set of conservation equations was discretized
using a 3D grid based on tetrahedral elements. A nu-
merical solver based on a finite element method and a
segregated approach is presented in a compact form.
The accurate representation of the computational domain
allows researching how changes in the shape of hydro-
cyclone will influence its operating performance. Other
developments will focus on the incorporation of turbu-
lence models in 3D.
A more thorough investigation of the algorithm presented

here is necessary and some complementary work to ver-
ify and validate numerical solutions has been undertaken.
This model will be examined through experimental testing.
The more advanced computations may exceed the current
workstation capabilities. However, the availability of modern
supercomputers allows the approximation of 3D multiphase
flows in hydrocyclones to be attempted.

Appendix A

Let Sdenote the collection of all realisations of the motion
of the mixture inD subject to certain initial and boundary
conditions. Let ‘m’ be a proper measure onS andϕ be the
probability density function onSsuch that:∫

S

ϕ(s) dm(s) = 1 (A1)

Corresponding to each realisations∈S, there exist:
(1) A solid particle constituent distribution functionχ i

(xxx, t,di ; s) in D×[0,∞) with
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χi(xxx, t, di, s)=
{

1, if xxx is occupied by particle withdi at t
0, otherwise

(A2)

(2) An interface distribution functionχ I (xxx, t,di ; s) in
D×[0,∞)with

χI(xxx, t, di, s) =
{

1, if xxx ∈ I (t; s)

0, otherwise
(A3)

where I(d; s):=cl {xxx∈D: χ (xxx, t,di ; s)=1}
⋂

cl{xxx∈D:
χ (xxx, t,di ; s)=0} is the interface between the fluid constituent
and the solid constituent,

(3) A mass density field function

ρ̃(xxx, t, di; s) in D×[0, ∞) (A4)

(4) A velocity field

ṽ̃ṽv(xxx, t, di; s) in D×[0, ∞) (A5)

The interfaceI(d; s) is singular, across which ? has a jump
and on whichρ andχ may not be defined.

From χ andρ, the mass density distributionρf andρpi
associated withs∈Scan be obtained,

ρ̃f = ρ

(
1 −

i=N∑
i=1

χ (xxx, t, di; s)

)
(A6)

ρ̃i = ρ̃χ(xxx, t, di; s). (A7)

The velocity field ṽ̃ṽvf of the fluid constituent and the
velocity field ṽ̃ṽvi of the solid constituent are given by:

ṽ̃ṽvf = ṽ̃ṽv onDf = {xxx∈D::: χi(xxx, t, di; s) = 0} (A8)

ṽ̃ṽvi = ṽ̃ṽv onDi = {xxx∈D::: χi(xxx, t, di; s) = 1} (A9)

A particle group ‘i’ volume fraction:

αi :=
∫

S

χi(x, t, di; s)ϕ(s) dm(s) (A10)

A fluid density

ρf :=
∫

S

ρ̃

(
1 −

i=N∑
i=1

χi (xxx, t, di; s)

)
ϕ(s) dm(s) (A11)

A momentum of a particle group ‘i’

ρivvvi(xxx, t) :=
∫

S

(ρ̃ṽ̃ṽv)χi(xxx, t, di; s)ϕ(s) dm(s) (A12)

A momentum of the fluid:

ρfvvvf (xxx, t) : =
∫

S

(ρ̃ṽ̃ṽv)

(
1 −

i=N∑
i=1

χi (xxx, t, di; s)

)

× ϕ(s) dm(s) (A13)

The physical fields for the motion of the solid phases are
not continuous in space and in time. Therefore, the concept

of Reynolds’ decomposition scheme for a one phase flow,
cannot be applied here. Rajagopal and Tao [9] defined the
correlations for the fluctuating velocities in the following
way:

(ρf v́vvf v́vvf )(xxx, t) :=
∫

S

[
ρ̃

(
1 −

i=N∑
i=1

χi(xxx, t, di; s

)]

× [
ṽ̃ṽv (xxx, t, di; s) − vvvf (xxx, t)

]
⊗ [

ṽ̃ṽv(xxx, t, di; s) − vvvf (xxx, t)
]
ϕ(s) dm(s)

(A14)

(ρf v́vvf v́vvf )(xxx, t) :=
∫

S

[
ρ̃χi ((xxx, t, di; s))

]
× [

ṽ̃ṽv(xxx, t, di; s) − vvvi(xxx, t)
]

⊗ [
ṽ̃ṽv(xxx, t, di; s) − vvvi(xxx, t)

]
ϕ(s) dm(s)

(A15)
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